Retiming

Lan-Da Van (范倫達), Ph. D.
Department of Computer Science
National Chiao Tung University
Taiwan, R.O.C.
Fall, 2017

ldvan@cs.nctu.edu.tw
http://www.cs.nctu.tw/~ldvan/
Outlines

- Introduction
- Definitions and Properties
- Solving Systems of Inequalities
- Retiming Techniques
- Conclusion
- Supplement
Introduction (1/2)

- Retiming is a transformation technique used to change the locations of delay elements in a circuit without affecting the input/output characteristics of the circuit.

- Critical path is defined to be the path with the longest computation time among all paths that contain zero delay.

- The lower bound on the clock period of the circuit can be achieved by retiming.
Introduction (2/2)

Application of Retiming

- Reduce the clock period.
- Reduce the number of registers.
- Reduce the power consumption and logic synthesis.

\[w(n) = ay(n-1) + by(n-2) \]
\[y(n) = w(n-1) + x(n) \]
\[= ay(n-2) + by(n-3) + x(n) \]

3 u.t.

\[w_1(n) = ay(n-1) \]
\[w_2(n) = by(n-2) \]
\[y(n) = w_1(n-1) + w_2(n-1) + x(n) \]
\[= ay(n-2) + by(n-3) + x(n) \]

2 u.t.

33% reduction
Outlines

- Introduction
- *Definitions and Properties*
- Solving Systems of Inequalities
- Retiming Techniques
- Conclusion
- Supplement
Definitions

\[V, U : \text{node} \]
\[r(V) : \text{retiming value} \]
\[w(e) : \text{weight of the edge} \ e \ \text{in} \ G \]
\[w_r(e) : \text{weight of the edge} \ e \ \text{in} \ G_r \]

\[w_r(e) = w(e) + r(V) - r(U) \]

\[\begin{align*}
 \text{ex: } r(1) &= 0, r(2) = 1, r(3) = 0, r(4) = 0 \\
 w_r(3 \rightarrow 2) &= w(3 \rightarrow 2) + r(2) - r(3) \\
 &= 0 + 1 - 0 = 1 \\
 w_r(2 \rightarrow 1) &= w(2 \rightarrow 1) + r(1) - r(2) \\
 &= 1 + 0 - 1 = 0
\end{align*} \]
Properties of Retiming

4.2.1 The weight of the retimed path \(p = V_0 \overset{e_0}{\rightarrow} V_1 \overset{e_1}{\rightarrow} \ldots \overset{e_{k-1}}{\rightarrow} V_k \) is given by \(w_r(p) = w(p) + r(V_k) - r(V_0) \).

4.2.2 Retiming does not change the number of delays in a cycle.

4.2.3 Retiming does not alter the iteration bound in a DFG.

4.2.4 Adding the constant value \(j \) to the retiming value of each node does not change the mapping from \(G \) to \(G_r \).
Property 4.2.1

The weight of the retimed path \(p = V_0 \xrightarrow{e_0} V_1 \xrightarrow{e_1} \ldots \xrightarrow{e_{k-1}} V_k \) is given by \(w_r(p) = w(p) + r(V_k) - r(V_0) \).

Proof

\[
\begin{align*}
 w_r(p) &= \sum_{i=0}^{k-1} w_r(e_i) \\
 &= \sum_{i=0}^{k-1} (w(e_i) + r(V_{i+1}) - r(V_i)) \\
 &= \sum_{i=0}^{k-1} w(e_i) + \left(\sum_{i=0}^{k-1} r(V_{i+1}) - \sum_{i=0}^{k-1} r(V_i) \right) \\
 &= w(p) + r(V_k) - r(V_0)
\end{align*}
\]
Outlines

- Introduction
- Definitions and Properties
- *Solving Systems of Inequalities*
- Retiming Techniques
- Conclusion
- Supplement
Solving Systems of Inequalities

Step 1: Draw a constraint graph
(a) Draw the node \(i \) for each of the \(N \) variables \(r_i, i=1,2,\ldots,N \).
(b) Draw the node \(N+1 \).
(c) For each inequality \(r_i-r_j \leq k \), draw the edge \(j \rightarrow i \) from node \(j \) to \(i \) with length \(k \).
(d) For each node \(i, i=1,2,\ldots,N \), draw the edge \(N+1 \rightarrow i \) from the node \(N+1 \) to \(i \) with length 0.

Step 2: Solve using a shortest path algorithm
(a) The system of inequalities has a solution if and only if the constraint graph contains no negative cycles.
(b) If a solution exists, one solution is where \(r_i \) is the minimum-length path from the node \(N+1 \) to the node \(i \).
Example 4.3.1 with M=5, N=4

Given Inequalities:

\[
\begin{align*}
 r_1 - r_2 & \leq 0 \\
 r_3 - r_1 & \leq 5 \\
 r_4 - r_1 & \leq 4 \\
 r_4 - r_3 & \leq -1 \\
 r_3 - r_2 & \leq 2
\end{align*}
\]

Step 1:

\[
\begin{array}{c|cccc}
V & r^{(k)}(V) & r^{(1)} & r^{(2)} & r^{(3)} \\
\hline
1 & 0 & 0 & 0 & 0 \\
2 & 0 & 0 & 0 & 0 \\
3 & 0 & 0 & 0 & 0 \\
4 & 0 & 0 & 0 & 0 \\
5 & 0 & 0 & 0 & 0 \\
\end{array}
\]

Step 2: Bellman-Ford algorithm

\[
\begin{array}{c|cccc}
V & r^{(k)}(V) & r^{(1)} & r^{(2)} & r^{(3)} & r^{(4)} \\
\hline
1 & 0 & 0 & 0 & 0 & 0 \\
2 & 0 & 0 & 0 & 0 & 0 \\
3 & 0 & 0 & 0 & 0 & 0 \\
4 & 0 & -1 & -1 & -1 & -1 \\
5 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

Ref=U5
Outlines

- Introduction
- Definitions and Properties
- Solving Systems of Inequalities
- **Retiming Techniques**
 - Cutset retiming and pipelining
 - Systolic transformation
 - Retiming for clock period minimization
- Conclusion
- Supplement
Cutset Retiming (1/2)

Definition: A cutset is a set of edges that can be removed from the graph to create 2 disconnected subgraphs.

Procedures:
- Step 1: Construct 2 disjointed sub-graphs G1 and G2
- Step 2: Add k delays to each edge from G1 to G2 and remove k delays from each edge from G2 to G1.

Feasible solution of cutset retiming
- \(wr(G1->G2)=w(G1->G2)+r(G2)-r(G1)=w(G1->G2)+k \)
- \(wr(G2->G1)=w(G2->G1)+r(G1)-r(G2)=w(G2->G1)-k \)
- \(\Rightarrow -\min\{w(G1->G2)\} \leq k \leq \min\{w(G2->G1)\} \)
Cutset Retiming (2/2)

- **Upper case**
 - Cutset = \{2\rightarrow1, 3\rightarrow2, 1\rightarrow4\} and feasible solution: \(0 \leq k \leq 1\)

- **Lower case**
 - Cutset = \{2\rightarrow1, 3\rightarrow2, 4\rightarrow2\} and feasible solution: \(0 \leq k \leq 1\)

\[G_1\]

\[G_2\]
Pipelining is a special case of cutset retiming where there are no edges in the cutset from G2 to G1, i.e., pipelining applies to graphs without loops.
Cutset Retiming and Slow-Down

Procedure:
- Replace each delay with \(N \) delays to create an \(N \)-slow version of the DFG.
- Perform cutset retiming on the \(N \)-slow DFG.

In (a), \(CP = 101 \oplus 2 \otimes T_{cp} = 101 \times 1 + 2 \times 2 = 105 \)

In (c), \(CP = 2 \oplus 2 \otimes T_{cp} = 2 \times 1 + 2 \times 2 = 6 \)
Systolic Transformation

Retiming Relationship

- Cutset Retiming
- Pipelining
- Systolic Transformation
Retiming for Clock Period Minimization (1/2)

Definition:

- $\Phi(G) = \max\{t(p) : w(p)=0\}$ (min. feasible clk period)
- $W(U,V) = \min\{w(p) : U \rightarrow V\}$
- $D(U,V) = \max\{t(p) : U \rightarrow V \text{ and } w(p) = W(U,V)\}$

Algorithm for computing $W(U,V)$ and $D(U,V)$:

1. Let $M = t_{\max} n$, where t_{\max} is the maximum computation time of the nodes in G and n is the number of nodes in G.
2. Form a new graph G' which is the same as G except the edge weights are replaced by $w'(e) = Mw(e) - t(U)$ for all edges.
3. Solve the all-pairs shortest path problem on G'. Let S'_{UV} be the shortest path from U to V.
4. If $U \neq V$, then $W(U,V) = \text{ceiling } (S'_{UV} / M)$ and $D(U,V) = MW(U,V) - S'_{UV} + t(V)$. If $U = V$, then $W(U,V) = 0$ and $D(U,V) = t(U)$.
W(U,V) and D(U,V) are used to determine if there is a retiming solution that can achieve a desired clock period.

Given a desired clock period c, if:

1. **feasibility constraint**:
 \[r(U) - r(V) \leq w(e) \text{ for every edge } e : U \rightarrow V \]

2. **critical path constraint**:
 \[r(U) - r(V) \leq W(U,V) - 1 \text{ for all vertices } U, V \text{ in } G \text{ such that } D(U,V) > c. \]

\[\Rightarrow \text{There is a feasible retiming solution } r \text{ such that } \Phi(Gr) \leq c. \]
Example with $c=3$ (1/3)

Step 1: $t_{\text{max}}=2$, $n=4$, $M=t_{\text{max}}\cdot n=8$

Step 2: As G' shows.

Step 3:

<table>
<thead>
<tr>
<th>S'_{UV}</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
<td>5</td>
<td>7</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>12</td>
<td>14</td>
<td>22</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>-2</td>
<td>12</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>-2</td>
<td>12</td>
<td>20</td>
</tr>
</tbody>
</table>

Step 4:

<table>
<thead>
<tr>
<th>$W(U,V)$</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$D(U,V)$</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>3</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>
Example with $c=3$ (2/3)

Step 5: Constraints

- **Feasibility constraint:**
 \[
 r(1) - r(3) \leq 1 \\
 r(1) - r(4) \leq 2 \\
 r(2) - r(1) \leq 1 \\
 r(3) - r(2) \leq 0 \\
 r(4) - r(2) \leq 0
 \]

- **Critical path constraint:**
 \[
 r(1) - r(2) \leq 0 \\
 r(2) - r(3) \leq 1 \\
 r(2) - r(4) \leq 2 \\
 r(3) - r(1) \leq 0 \\
 r(3) - r(4) \leq 2 \\
 r(4) - r(1) \leq 0 \\
 r(4) - r(3) \leq 1
 \]

Step 6: Constraint Graph

![Constraint Graph Diagram]
Example with \(c=3 \) (3/3)

- **Step 7:** Using either **Bellman-Ford algorithm** or **Floyd-Warshall algorithm**, the retiming values for each node are calculated as
 - \(r(1)=r(2)=r(3)=r(4)=0 \)

- **Step 8:** Retimed DFG can be obtained as

![Diagram of retimed DFG]
Example with c=2 (1/2)

Feasibility constraint:
- $r(1)-r(3) \leq 1$
- $r(1)-r(4) \leq 2$
- $r(2)-r(1) \leq 1$
- $r(3)-r(2) \leq 0$
- $r(4)-r(2) \leq 0$

Critical path constraint:
- $r(1)-r(4) \leq 1$
- $r(2)-r(3) \leq 1$
- $r(2)-r(4) \leq 2$
- $r(3)-r(1) \leq 0$
- $r(3)-r(2) \leq -1$
- $r(3)-r(4) \leq 2$
- $r(4)-r(1) \leq 0$
- $r(4)-r(2) \leq -1$
- $r(4)-r(3) \leq 1$
Example with c=2 (2/2)

Using either **Bellman-Ford algorithm** or **Floyd-Warshall algorithm**, the retiming values for each node are calculated as:

\[
\begin{align*}
 r(1) &= -1, \quad r(2) = 0, \\
 r(3) &= -1, \quad r(4) = -1
\end{align*}
\]

\[
\begin{align*}
 j+1 \quad r(1) &= 0, \quad r(2) = 1, \\
 r(3) &= 0, \quad r(4) = 0
\end{align*}
\]

Retimed DFG can be obtained as:

![Retimed DFG Diagram](Image)
Conclusion

- Reduction of clock period, number of registers, and power consumption by retiming for synchronous systems
- Shortest path algorithms can be used to obtain a retiming solution if one exists.
- Retiming can also be used as a preprocessing step for folding and for computation of round-off noise as discussed in Chap 6 and 11, respectively.
Supplement Part
The Shortest Path Algorithm
Shortest Path Algorithms

- Length: sum of weights
- Negative cycle: when sum of lengths is negative
 ex: cycle 2→4→1→2
- S_{UV}: the shortest path from the node U to the node V.
- The Bellman-Ford algorithm
- The Floyd-Warshall algorithm
The Bellman-Ford algorithm

• Single-point shortest path algorithm

\[r^{(1)}(U) = 0 \]
For k = 1 to n
 If k ≠ U
 \[r^{(1)}(k) = w(U \rightarrow k) \]
 For k = 1 to n-2
 For V = 1 to n
 \[r^{(k+1)}(V) = r^{(k)}(V) \]
 For W = 1 to n
 If \(r^{(k+1)}(V) > r^{(k)}(W) + w(W \rightarrow V) \)
 \[r^{(k+1)}(V) = r^{(k)}(W) + w(W \rightarrow V) \]
 For V = 1 to n
 For W = 1 to n
 If \(r^{(n-1)}(V) > r^{(n-1)}(W) + w(W \rightarrow V) \)
 return FALSE and exit

return TRUE and exit
Example

\[U=2 \ (\text{node 2}) \]

\[
\begin{array}{c|ccc}
V & k=1 & k=2 & k=3 \\
\hline
V=1 & \infty & 3 & 3 \\
V=2 & 0 & 0 & 0 \\
V=3 & 1 & 1 & 1 \\
V=4 & 2 & 2 & 2 \\
\end{array}
\]

\[r^{(3)}(V) \] is the shortest path from node 2 to node V for V=1,2,3,4