Low-Power CMOS VLSI Design

Lan-Da Van (范倫達), Ph. D.
Department of Computer Science,
National Chiao Tung University,
Taiwan, R.O.C.
Fall, 2010

ldvan@cs.nctu.edu.tw

http://www.cs.nctu.tw/~ldvan/
Outline

- Introduction
 - Low-Power Process-Level Design (Ignore here)
 - Low-Power Logic/Circuit-Level Design
 - Low-Power Algorithm/Architecture-Level Design
 - Low-Power System-Level Design
- Conclusion
- References
Low Power Design– An Ongoing and Important Discipline

- Historical figure of merit for VLSI design
 - Performance (circuit speed and system quality)
 - Chip area (circuit cost). But now,…

- Power dissipation is now an important metric in VLSI design.
 - No single major source for power savings across all design levels – Required a new way of THINKING!!!
 - Companies lack the basic power-conscious culture and designers need to be educated in this respect.

- Overall Goal - To reduce power dissipations but maintaining adequate throughput rate.
Motivation - Microprocessor

| Processor | Source | Date (chip) | Bits | Clock (MHz) | SPEC-92 int | SPEC-92 fp | SPEC-95 int | SPEC-95 fp | Units / Issue | Pipe Stages | Cache (i/d) | Vdd (V) | Tech (um) | M (i) | Power (W) | Size (um²) | Xsistor (10^6) |
|---------------|--------|-------------|------|-------------|-------------|-------------|-------------|-------------|--------------|-------------|-------------|----------|-----------|--------|---------|--------|-------------|-------------|----------------|
| i386SX | [41] | 88 | w/32 | 33 | 6.2 | 3.3 | 1/1 | 4/na/na | NA | NA | 5.0 | 1.0 | -2 | 3 | 0.28 |
| i486 | [45] | 89 | w/32 | 33 | 6.2 | 3.3 | 1/1 | 4/na/na | NA | NA | 5.0 | 1.0 | -2 | 3 | 1.2 |
| i486DX | [10] | 91 | w/32 | 50 | 27.9 | 13.1 | 2/1 | 5/na/5? | 8 u | 4 | 5.0 | 0.8 | 3 | 0.9 | 8 |
| i486DX2 | [20] | 91 | w/32 | 66 | 32.2 | 16.0 | 2/1 | 5/na/5? | 8 u | 4 | 5.0 | 0.8 | 3 | 0.9 | 4 |
| i486DX4 | [42] | 93 | w/32 | 99 | 51 | 27 | 2/1 | 5/na/5? | 16 u | 4 | 3.3 | 0.6 | 4 | 1.6 | 1.6 |
| P5 | [2,10] | 93 | w/32 | 66 | 78 | 63.6 | 3/2 | 5/na/8 | 8/8 | 2/2 | 5.0 | 0.8 | 3 | 16.0 | 29 |
| P54VRT | [vi,sp]| 94 | w/32 | 75 | 89.1 | 68.5 | 2.4 | 2.1 | 2.4 | 3/2 | 8/8 | 2/2 | 5.2 | 2.4 | 14 |
| P54C | [2,11,vi]| 94 | w/32 | 100 | 122 | 93.2 | 3/2 | 5/na/8 | 8/8 | 2/2 | 3.3 | 0.6 | 4 | 5.0 | 148 |
| P54CQS | [47,vi]| 95 | w/32 | 120 | 157 | 108 | 3/2 | 5/na/8 | 8/8 | 3/2 | 3.3 | 0.35 | 4 | 10.0 | 90 |
| P54CS | [53,vi]| 95 | w/32 | 133 | 174 | 121 | 4.1 | 3.1 | 4.1 | 3/2 | 3.3 | 0.35 | 4 | 10.0 | 90 |
| P54CS | [31,vi]| 96 | w/32 | 150 | 181 | 125 | 4.3 | 3.0 | 4.3 | 3/2 | 3.3 | 0.35 | 4 | 10.0 | 90 |
| P55C | [bw] | 96 | w/32 | 166 | 293 | 261 | 7.1 | 6.2 | 7/3(1) | 8/8 | 3.3 | 0.35 | 4 | 16/16 | 2.5 |
| P6 | [vi] | 95 | w/32 | 150 | 245 | 220 | 6.1 | 5.4 | 7/3(1) | 8/8 | 3.1 | 0.6 | 4 | 29.2 | 5.5 |
| Deschutes (P6)| [vi] | 95 | w/32 | 200 | 320 | 283 | 8.1 | 6.8 | 7/3(1) | 8/8 | 3.3 | 0.35 | 4 | 35 | 5.5 |
| Merced (P7) | [vi] | 977 | w/64 | 166 | 293 | 261 | 7.1 | 6.2 | 7/3(1) | 8/8 | 3.3 | 0.35 | 4 | 29.4 | 5.5 |
Low Power Competitive Reasons

- **Battery Powered Systems**
 - Extend battery life
 - Reduce weight and size

- **High-Performance Systems**
 - **Cost**
 - Package (chip carrier, heat sink, card slots, …)
 - Power Systems (supplies, distribution, regulators, …)
 - Fans (noise, power, reliability, area, …)
 - Operating cost to customer – Re-start issue.
 - **Reliability**
 - Failure rate increases by 4X for $T @ 110^\circ C$ vs $70^\circ C$
 - **Size and Weight**
The Power Crisis: Portability

PDA, Cellular Phone, Notebook Computer, etc.

Expected Battery Lifetime increase
Over next 5 years: 30-40%
A Multimedia Terminal: The Infopad

Present day battery technology (year 1990) – 20 lbs for 10hrs
VLSI Signal Processing System Design Space

- Cost
- Performance
- Area
- Power
- Test

System Level
Algorithm Level
Architecture Level
Logic Level
Circuit Level
Process Level
Low Power System Design Space

- **System**
 - Power budgeting, S/H partitioning, power management, core selection

- **Algorithm**
 - Algorithmic reduction, data transformation, CSE, low-complexity operation

- **Architecture**
 - Parallelism, pipelining, re-timing, unfolding, signal ordering, glitch minimization, data representation, resource allocation, multi-clock

- **Logic/Circuit**
 - Logic style, arithmetic, glitch/noise minimization, re-sizing, adaptive voltage scaling, multi-Vdd, multi-Vth, multi-clock, layout, power-driven P&R

- **Process**
 - Low-power device, alternative technology, multi-Vth
Outline

- Introduction
- Low-Power Process-Level Design (Ignore here)
- \textit{Low-Power Logic/Circuit-Level Design}
- Low-Power Algorithm/Architecture-Level Design
- Low-Power System-Level Design
- Conclusion
- References
Where Does Power Go in CMOS?

Source of power dissipation

\[P = P_{\text{dynamic}} + P_{\text{short-circuit}} + P_{\text{leakage}} + P_{\text{static}} \]

Definitions:

- **Dynamic/switching power**: \(P = \alpha CV^2f \)
 - Charging and discharging parasitic capacitors
 - \(\alpha \): switching activity factor

- **Short circuit power**: \(P = I_{\text{sc}}V \)
 - Direct path between supply rail during switching

- **Leakage power**: \(P = I_{\text{leakage}}V \)
 - Reverse bias diode leakage
 - Sub-threshold conduction

- **Static power**: \(P = I_{\text{static}}V \)
 - Each input node is connected to fixed stable voltage
Dynamic Power Consumption (1/2)

Power = Energy/transition * transition rate

\[\text{Power} = C_L * V_{dd}^2 * f_{0 \rightarrow 1} \]

\[= C_L * V_{dd}^2 * P_{b_{0 \rightarrow 1}} * f \]

\[= C_{EFF} * V_{dd}^2 * f \]

\[= P_{b_{0 \rightarrow 1}} * C_L * V_{dd}^2 * f \]

- \(C_{EFF} \) = Effective Capacitance = \(C_L * P_{b_{0 \rightarrow 1}} \)
Dynamic Power Consumption (2/2)

- Need to reduce $Pb_{0 \rightarrow 1}$, C_L, V_{dd}, and f for low power design
 - Reduce the probability, $P_{0 \rightarrow 1}$
 - Minimize the geometry and remove the redundancy
 - Reduce the power supply level
 - Use lowest clock frequency

- Power dissipation is data dependent function of switching activity. => Pattern Dependent!
Choice of Logic Style

CONVENTIONAL CMOS Adder

OPTIMIZED static Adder

DCVSL Adder

CPI Adder
Choice of Logic Style

- Power-delay product improves as voltage decreases.
- The “best” logic style minimizes power-delay (i.e., energy) for a given delay constraint.
Type of Logic Function: NOR

Example: Static-style 2-input NOR gate

Assume:
- \(P(A=1) = \frac{1}{2} \)
- \(P(B=1) = \frac{1}{2} \)

Then:
- \(P(\text{Out} = 1) = \frac{1}{4} \)
- \(P(0\rightarrow1) = P(\text{Out}=0)\times P(\text{Out}=1) \)
 \[= \frac{3}{4} \times \frac{1}{4} = \frac{3}{16} \]

\(a_{0\rightarrow1} = \frac{3}{16} \)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Truth Table of 2-Input NOR Gate
2-Input NOR Gate Transition Probability

\[P_0 \rightarrow 1 = P_0 P_1 = (1 - P_A)(1 - P_B)(1 - P_A)(1 - P_B) \]

\[P_1 = (1 - P_A)(1 - P_B) \]
Type of Logic Function: XOR

Example: Static-style 2-input XOR gate

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Truth Table of 2-Input XOR Gate

Assume:
- $P(A=1) = 1/2$
- $P(B=1) = 1/2$

Then:
- $P(\text{Out}=1) = 1/2$
- $P(0\to1) = P(\text{Out}=0) \times P(\text{Out}=1) = 1/2 \times 1/2 = 1/4$

$a_{0\to1} = 1/4$
2-Input XOR Gate Transition Probability

\[P_1 = P_A (1 - P_B) + P_B (1 - P_A) = P_A + P_B - 2P_A P_B \]

\[P_{0 \rightarrow 1} = P_0 P_1 = (1 - (P_A + P_B - 2P_A P_B))(P_A + P_B - 2P_A P_B) \]
Which One is Your Choice?

Which one is for low-power design?

WHICH ONE IS FOR LOW-POWER DESIGN?
Glitching Activity in CMOS Network

\[\alpha_{0->1} \] can be greater than 1 due to glitching!
Glitching in a Carry Ripple Adder

Transitions due to carry propagation
Chain vs Tree Datapath (1/2)

<table>
<thead>
<tr>
<th></th>
<th>O1</th>
<th>O2</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1 (Chain)</td>
<td>1/4</td>
<td>1/8</td>
<td>1/16</td>
</tr>
<tr>
<td>P_0 = 1 - P_1 (Chain)</td>
<td>3/4</td>
<td>7/8</td>
<td>15/16</td>
</tr>
<tr>
<td>P_0 -> 1 (Chain)</td>
<td>3/16</td>
<td>7/64</td>
<td>15/256</td>
</tr>
<tr>
<td>P_1 (Tree)</td>
<td>1/4</td>
<td>1/4</td>
<td>1/16</td>
</tr>
<tr>
<td>P_0 = 1 - P_1 (Tree)</td>
<td>3/4</td>
<td>3/4</td>
<td>15/16</td>
</tr>
<tr>
<td>P_0 -> 1 (Tree)</td>
<td>3/16</td>
<td>3/16</td>
<td>15/256</td>
</tr>
</tbody>
</table>

Chain

[Diagram of Chain Datapath]

Tree

[Diagram of Tree Datapath]
Chain vs Tree Datapath (2/2)

<table>
<thead>
<tr>
<th></th>
<th>O1</th>
<th>O2</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_{0\rightarrow 1} \text{ (Chain)}/P_{0\rightarrow 1} \text{ (Tree)}$</td>
<td>1</td>
<td>0.58</td>
<td>1</td>
</tr>
<tr>
<td>$\alpha_{0\rightarrow 1} \text{ (Chain)}/\alpha_{0\rightarrow 1} \text{ (Tree)}$</td>
<td>1</td>
<td>0.83</td>
<td>1.47</td>
</tr>
</tbody>
</table>

WHICH ONE IS FOR LOW-POWER DESIGN?
Glitching at the Datapath Level

Irregular

Regular

Two Glitches!

Can be reduced by reducing the logic depth and balancing signal paths.
How to Minimize Glitching?

Equalize Length of Timing Paths through Design!
Data Representation (1/2)

Two’s Complement Representation

Sign-magnitude Representation

Bit Position

Bit Position
Data Representation (2/2)

(Binary v.s. Gray Encoding)

<table>
<thead>
<tr>
<th>Decimal Value</th>
<th>Binary Code</th>
<th>Grey Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
<td>0001</td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
<td>0011</td>
</tr>
<tr>
<td>3</td>
<td>0011</td>
<td>0010</td>
</tr>
<tr>
<td>4</td>
<td>0100</td>
<td>0110</td>
</tr>
<tr>
<td>5</td>
<td>0101</td>
<td>0111</td>
</tr>
<tr>
<td>6</td>
<td>0110</td>
<td>0101</td>
</tr>
<tr>
<td>7</td>
<td>0111</td>
<td>0100</td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
<td>1100</td>
</tr>
<tr>
<td>9</td>
<td>1001</td>
<td>1101</td>
</tr>
<tr>
<td>10</td>
<td>1010</td>
<td>1111</td>
</tr>
<tr>
<td>11</td>
<td>1011</td>
<td>1110</td>
</tr>
<tr>
<td>12</td>
<td>1100</td>
<td>1010</td>
</tr>
<tr>
<td>13</td>
<td>1101</td>
<td>1011</td>
</tr>
<tr>
<td>14</td>
<td>1110</td>
<td>1001</td>
</tr>
<tr>
<td>15</td>
<td>1111</td>
<td>1000</td>
</tr>
</tbody>
</table>

(Binary Coded vs. Grey Coded)
Outline

- Introduction
- Low-Power Process-Level Design (Ignore here)
- Low-Power Logic/Circuit-Level Design
- Low-Power Algorithm/Architecture-Level Design
- Low-Power System-Level Design
- Conclusion
- References
Signal Reordering Operation

- Ex1. $Y = AB + AC = A(B + C)$
- Ex2. $Y = 3X = X + (X << 1)$
Resource Sharing Can Increase Activity (1/2)

Separate Bus Structure

of Bus Transitions Per Cycle = \(2(1 + 1/2 + 1/4 + \ldots) = 4\),
Where 2 means 2 separate buses,
1 denotes the transition probability of LSB,
\(1/2\) denotes the transition probability of 2nd LSB, and etc.
Resource Sharing Can Increase Activity (2/2)

Bit Position
Lowering V_{dd} Increases Delay

![Graph showing normalized delay vs. V_{dd}](image)

- Relatively independent of logic function and style.
Reducing V_{dd}

- Strong function of voltage (V^2 dependence).
- Relatively independent of logic function and style.
- Power Delay Product Improves with lowering V_{DD}.

$$P \times t_d = E_t = C_L \times V_{dd}^2$$

$$\frac{E(V_{dd}=2)}{E(V_{dd}=5)} = \frac{(C_L) \times (2)^2}{(C_L) \times (5)^2}$$

$$E(V_{dd}=2) \approx 0.16 \times E(V_{dd}=5)$$
Architecture Trade-offs: Reference Datapath

- Critical path delay \(\Rightarrow T_{\text{adder}} + T_{\text{comparator}} (= 25\text{ns}) \)
 \(\Rightarrow f_{\text{ref}} = 40\text{Mhz} \)

- Total capacitance being switched = \(C_{\text{ref}} \)

- \(V_{\text{dd}} = V_{\text{ref}} = 5\text{V} \)

- Power for reference datapath = \(P_{\text{ref}} = C_{\text{ref}} V_{\text{ref}}^2 f_{\text{ref}} \)

Area = 636 \times 833 \text{ u}^2
Parallel Datapath

- The clock rate can be reduced by half with the same throughput \(f_{\text{par}} = f_{\text{ref}} / 2 \)
- \(V_{\text{par}} = V_{\text{ref}} / 1.7, \quad C_{\text{par}} = 2.15 C_{\text{ref}} \)
- \(P_{\text{par}} = (2.15 C_{\text{ref}}) \left(V_{\text{ref}} / 1.7 \right)^2 \left(f_{\text{ref}} / 2 \right) = 0.36 P_{\text{ref}} \)

Area = 1476 x 1219 \(\mu^2 \)
Pipelined Datapath

- $f_{pipe} = f_{ref}$
- $C_{pipe} = 1.1C_{ref}$
- $V_{pipe} = V_{ref}/1.7$

- Voltage can be dropped while maintaining the original throughput.

- $P_{pipe} = C_{pipe} V_{pipe}^2 f_{pipe} = (1.1C_{ref}) (V_{ref}/1.7)^2 f_{ref} = 0.37 P_{ref}$
Summary: A Low-Power Data Path

<table>
<thead>
<tr>
<th>Architecture type</th>
<th>Voltage</th>
<th>Area</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Datapath (no pip/par)</td>
<td>5V</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Pipelined datapath</td>
<td>2.9V</td>
<td>1.3</td>
<td>0.37</td>
</tr>
<tr>
<td>Parallel datapath</td>
<td>2.9V</td>
<td>3.4</td>
<td>0.34</td>
</tr>
<tr>
<td>Pipeline-parallel datapath</td>
<td>2.0V</td>
<td>3.7</td>
<td>0.18</td>
</tr>
</tbody>
</table>

- Desire to operate at lowest possible speeds (using low supply voltages)
- Use architecture optimization to compensate for slower operation
Computational Complexity of DCT Algorithms

<table>
<thead>
<tr>
<th>DCT Algorithm</th>
<th>Multiplies (8x8)</th>
<th>Additions (8x8)</th>
<th>Implemented by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brute Force</td>
<td>4096</td>
<td>4096</td>
<td>-</td>
</tr>
<tr>
<td>Row-Col DCT</td>
<td>1024</td>
<td>1024</td>
<td>Bell core (16x16)</td>
</tr>
<tr>
<td>Chen’s Algorithm</td>
<td>256</td>
<td>416</td>
<td>Telettra</td>
</tr>
<tr>
<td>Lee’s Algorithm</td>
<td>192</td>
<td>464</td>
<td>SGS - Thompson</td>
</tr>
<tr>
<td>Feig’s Algorithm</td>
<td>54</td>
<td>462</td>
<td>IBM (GP computer)</td>
</tr>
</tbody>
</table>

- Reducing # of operations (switching events) is important in reducing the power.
- Routing and layout issues for irregular structures vs. regular structures.
Low-Power Cache and Register Configuration

- **Application profiling**
 - Trade-off between performance, power and size

- **Rule of thumb**
 - Access and storage the most frequently used instructions
 - Avoid accessing larger cache/register
 - Partition cache and register
 - Aware of partitioning
Outline

- Introduction
- Low-Power Process-Level Design (Ignore here)
- Low-Power Logic/Circuit-Level Design
- Low-Power Algorithm/Architecture-Level Design
- **Low-Power System-Level Design**
 - Low Power System Perspective
 - Low Power Applications
- Conclusion
- References
Power Down Techniques

Operating States

ACTIVE OR FULL-ON
(FASTEST CLOCK)

STANDBY
(SLOW CLOCK)

SUSPEND OR SLEEP
(SLOWEST CLOCK or SHUT DOWN)

Activity Monitor

μ - processor
Software versus Hardware

<table>
<thead>
<tr>
<th></th>
<th>Advantage</th>
<th>Disadvantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software</td>
<td>• Free but not always</td>
<td>• High power consumption</td>
</tr>
<tr>
<td></td>
<td>• High flexibility</td>
<td>• Slow in execution</td>
</tr>
<tr>
<td></td>
<td>• Ease of compatibility</td>
<td>• Inefficient</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Larger staff</td>
</tr>
<tr>
<td>Hardware</td>
<td>• High speed</td>
<td>• High die cost</td>
</tr>
<tr>
<td></td>
<td>• Low power</td>
<td>• Low flexibility</td>
</tr>
<tr>
<td></td>
<td>• High efficiency</td>
<td>• Low compatibility</td>
</tr>
<tr>
<td></td>
<td>• Less staff</td>
<td></td>
</tr>
</tbody>
</table>
Energy-Efficient Software Coding

- Potential for power reduction via software modification is relatively unexploited.
- Code size and algorithmic efficiency can significantly affect energy dissipation.
- Pipelining at software level- VLIW coding style

References:
Power Hunger – Clock Network

- H-Tree – design deficiencies based on Elmore delay model.
- PLL – every designer (digital or analog) should have the knowledge of PLL.
 - Multiple frequencies in chips/systems – by PLL
 - Low main frequency, But
 - Jitter and noise, gain and bandwidth, pull-in and lock time, stability …
- Asynchronous => Use gated clocks, sleep mode
Power Analysis in the Design Flow

Z = X^4Y
if (Z<0) then Z=0

Algorithm

Fast & Accurate

Architecture

Too Late

Gate/Circuit

Too Little

Power

Time

Area

Exploration
Applications I: Wireless Computing/Communication

Fiber Optic Backbone > 10 Gbits/sec

- Compute Servers
- Wireless Base Station
- Video Database (Compressed Video)
- Speech Recognition
- Large Commercial Database (Airline schedule, Newspaper, ...)
- Personal Communicators

InfoPad (A Portable Multimedia Terminal)
- Speech I/O and Pen Input
- X-terminal
- Full-motion Video
Applications II: A Portable Multimedia Terminal

Diagram:

- Antenna ↔ Radio Modem
- Protocol Module (2mW)
- Pen Digitizer
- Speech Codec
- Text/Graphics Frame-Buffer Module (1mW)
- Video Decompression Module (2mW)

Protocol, ECC, Buffering, Video Decompression, and I/O
Applications III: System on Chip (SOC)

- Entire system function
 - Logic + Memory
 - More than two types of devices
- Allow more freedoms in architecture
- Hardware and software partition

Diagram:

- Idea
 - Alg./Arc. Exploration
 - HW+SW
 - ConvergentSC
 - HW
 - Virtual SoC Platform
 - SOC

- ASIC Approach BUT Hard to SOC Design!
Conclusions

- Low-Power and high-speed tradeoff design is an essential requirement for many applications.
- Low power impacts on the cost, size, weight, performance, and reliability.
- Reduce $P_{0\rightarrow 1}$, C_L, V_{dd}, and f for low power design across each level!!
Reference

Self-Test Exercises

STE1: Calculate the switching activity EQUATION EXPRESSION of 2-input AND gate and simulate the histogram of transition probability (P_{0->1}) vs P_A and P_B.

STE2: Calculate the switching activity EQUATION EXPRESSION of 3-input NAND gate.