Algorithm Strength Reduction in Filters and Transforms [Part I]

Recursive DFT/IDFT Design: Algorithm and Architecture

Lan-Da Van (范倫達), Ph. D.
Department of Computer Science
National Chiao Tung University
Taiwan, R.O.C.
Fall, 2010

ldvan@cs.nctu.edu.tw
http://www.cs.nctu.edu.tw/~ldvan/
Outline

- Introduction
- Review of First- and Second-Order Recursive Discrete Fourier Transform (DFT) Structures
 - New Recursive DFT/IDFT Algorithm and Architecture
 - Folded-Type DFT/IDFT Architecture and Implementation
- Comparison Results
- Conclusions
Orthogonal Matrix Review

- Def: Orthogonal and unitary matrices
 - Orthogonal
 \[A^{-1} = A^T \]
 \[A^T A = AA^T = I \]
 - Unitary
 \[A^{-1} = A^* \]
 \[A^* A = AA^* = I \]

- Def: If the transform matrix is an orthogonal matrix, then the transform is called an orthogonal transform.
 - Forward transform
 \[z = WxW^T \]
 - Inverse transform
 \[x = W^TzW = W^TWxW^TW \]

- The original signal can be reconstructed from its transformation.
Why Orthogonal Transformation?

- Energy conservation
- Energy compaction
 - Most unitary transforms tend to pack a large fraction of the average energy of a signal into a relatively few components of the transform coefficients.
- Decorrelation
 - When a signal is highly correlated, the transform coefficients tend to be uncorrected (or less correlated).
- Information preservation
 - The information carried by a signal is preserved under a unitary transform.
Orthogonal Transform Category

- Recursive-Algorithm Based Architecture
 - Advantage: less area
 - Application: dual tone multi-frequency (DTMF) Detection

- Butterfly-Based Architecture

- ROM-Based Operation Structure

- Multiplier-Accumulator Based Structure

- Hybrid of the Above

- Wavelet Transform
Recursive Algorithms for Orthogonal Transform

- Goertzel algorithm
- C-S’s algorithm
- Chebyshev polynomials
- Clenshaw’s recurrence formula (CRF)
Recursive Discrete Fourier Transform (DFT)

\[X[k] = \sum_{n=0}^{N-1} x[n] W_N^{kn} \] \hspace{1cm} \text{---(1)}

where \(W_N = e^{\frac{j2\pi}{N}} \) and \(x[n] \) as well as \(X[k] \) denote DFT input and output sequences, respectively.

\[X[k] = W_N^{-kN} \sum_{r=0}^{N-1} x[r] W_N^{kr} = \sum_{r=0}^{N-1} x[r] W_N^{-k(N-r)} \] \hspace{1cm} \text{---(2)}

\[y_k[n] = \sum_{r=-\infty}^{\infty} x[r] W_N^{-k(n-r)} u[n - r] \] \hspace{1cm} \text{---(3)}

\[X[k] = y_k[n] \bigg|_{n=N} \] \hspace{1cm} \text{---(4)}
Block Diagram of the First-Order Recursive DFT Structure

\[H_k(z) = \frac{1}{1 - W_N^{-k} z^{-1}} \]

\[x[n] \xrightarrow{\sum} z^{-1} \xrightarrow{W_N^{-k}} X[k] \]

<table>
<thead>
<tr>
<th>Parameters</th>
<th>First-Order DFT/IDFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical Period</td>
<td>(T_m + 2T_a)</td>
</tr>
<tr>
<td># of Real Multipliers</td>
<td>4</td>
</tr>
<tr>
<td># of Real Multiplications for Each Output (X[k]) or (x[n])</td>
<td>(4N)</td>
</tr>
<tr>
<td># of Real Additions for Each Output (X[k]) or (x[n])</td>
<td>(4N)</td>
</tr>
<tr>
<td># of Computation Cycles for N-Point DFT/IDFT</td>
<td>(N^2)</td>
</tr>
</tbody>
</table>
Multiplexer-Type Dash-Line Implementation with Down-Sampling Value of N
Recursive Discrete Fourier Transform (DFT)

\[H_k(z) = \frac{1}{1 - W_N^{-k} z^{-1}} \]

\[= \frac{1 - W_N^k z^{-1}}{(1 - W_N^{-k} z^{-1})(1 - W_N^k z^{-1})} \]

\[= \frac{1 - W_N^k z^{-1}}{1 - 2 \cos(2\pi k / N) z^{-1} + z^{-2}} \quad --- (6) \]

\[H_k(z) = \frac{1 - \cos(2\pi k / N) z^{-1} + j \sin(2\pi k / N) z^{-1}}{1 - 2 \cos(2\pi k / N) z^{-1} + z^{-2}} \quad --- (7) \]
Block Diagram of the Second-Order Recursive DFT Structure

\[H_k(z) = \frac{1 - W_N^k z^{-1}}{1 - 2\cos\left(\frac{2\pi k}{N}\right) z^{-1} + z^{-2}} \tag{6} \]

- **Parameters**
- **Second-Order DFT/IDFT**
 - Critical Period: \(T_m + 3T_a \)
 - # of Real Multipliers: 6
 - # of Real Multiplications for Each Output \(X[K] \) or \(x[n] \): \(2N + 4 \)
 - # of Real Additions for Each Output \(X[K] \) or \(x[n] \): \(4N + 4 \)
 - # of Computation Cycles for N-Point DFT/IDFT: \(N^2 \)
Outline

- Introduction
- Review of First- and Second-Order Recursive Discrete Fourier Transform (DFT) Structures
- New Recursive DFT/IDFT Algorithm and Architecture
- Folded-Type DFT/IDFT Architecture and Implementation
- Comparison Results
- Conclusions
Proposed Area-Efficient Recursive DFT Architecture

\[H_k(z) = \frac{1 - \cos(2\pi k / N) z^{-1} + j \sin(2\pi k / N) z^{-1}}{1 - 2 \cos(2\pi k / N) z^{-1} + z^{-2}} \]
---(7)
Combinations of Register-Splitting Structures

<table>
<thead>
<tr>
<th>Combinations</th>
<th>Critical Period</th>
<th># of Delays</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>$T_m + 3T_a$</td>
<td>2</td>
</tr>
<tr>
<td>01</td>
<td>$T_m + 3T_a$</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>$T_m + 2T_a$</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>$T_m + 2T_a$</td>
<td>4</td>
</tr>
</tbody>
</table>

Optimized Value
Proposed High-Speed Area-Efficient Recursive DFT Architecture

\[x[n] \rightarrow \sum \rightarrow \frac{1}{z^{-1}} \rightarrow \sum \rightarrow \frac{1}{z^{-1}} \rightarrow X[k] \]

- Critical Period: \(T_m + 2T_a \)
- # of Real Multipliers: 4
- # of Real Multiplications for Each Output \(X[K] \) or \(x[n] \): \(2N + 2 \)
- # of Real Additions for Each Output \(X[K] \) or \(x[n] \): \(4N + 4 \)
- # of Computation Cycles for N-Point DFT/IDFT: \(N^2 \)
Proposed High-Speed Area-Efficient Recursive IDFT Architecture

\[H_n(z) = \frac{1 - \cos(2\pi n / N)z^{-1} - j\sin(2\pi n / N)z^{-1}}{1 - 2\cos(2\pi n / N)z^{-1} + z^{-2}} \] ---(8)

\[X[k] \rightarrow \Sigma \rightarrow z^{-1} \rightarrow \sum \rightarrow HS \leftrightarrow \rightarrow \cos(\frac{2\pi n}{N}) \rightarrow j\sin(\frac{2\pi n}{N}) \rightarrow \Sigma \rightarrow \Sigma \rightarrow z^{-1} \rightarrow \Sigma \rightarrow x[n] \]
Parallel High-Speed Area-Efficient Recursive DFT Architecture

- Parameters for Proposed Work 2 (Parallel Type)
 - Critical Period: \(T_m + 2T_a \)
 - # of Real Multipliers: \(4N \)
 - # of Real Multiplications for Each Output \(x[k] \) or \(x[n] \): \(2N + 2 \)
 - # of Real Additions for Each Output \(x[k] \) or \(x[n] \): \(4N + 4 \)
 - # of Computation Cycles for \(N \)-Point DFT/IDFT: \(2N \)
Folded High-Speed Area-Efficient Recursive DFT Architecture

Parameters

<table>
<thead>
<tr>
<th>Proposed Work 3 (Folded Type)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical Period</td>
</tr>
<tr>
<td># of Real Multipliers</td>
</tr>
<tr>
<td># of Real Multiplications</td>
</tr>
<tr>
<td># of Real Additions</td>
</tr>
<tr>
<td># of Computation Cycles</td>
</tr>
</tbody>
</table>
New Recursive Formula for DFT (1/5)

\[y[k] = \sum_{n=0}^{N-1} x[n] \cdot W_N^{kn} \] , where \(W_N = e^{-j2\pi/N} \)

\[y[k] = \sum_{n=0}^{N/2-1} x'[n] \cdot W_N^{kn} + \sum_{n=0}^{N/2-1} x'[N-1-n] \cdot W_N^{k(N-1-n)} \]

\[= \sum_{n=0}^{N/2-1} \left(x'[n] + W_N^{-k} \cdot x'[N-1-n] \right) \cdot \cos\left(\frac{2\pi kn}{N} \right) \]

\[+ j \sum_{n=0}^{N/2-1} \left(-x'[n] + W_N^{-k} \cdot x'[N-1-n] \right) \cdot \sin\left(\frac{2\pi kn}{N} \right) = y_{DCT}[k] + jy_{DST}[k] \]

, where

\[y_{DCT}[k] = \sum_{n=0}^{N/2-1} \left(x'[n] + W_N^{-k} \cdot x'[N-1-n] \right) \cdot \cos\left(\frac{2\pi kn}{N} \right) \]

\[y_{DST}[k] = - \sum_{n=0}^{N/2-1} \left(x'[n] - W_N^{-k} \cdot x'[N-1-n] \right) \cdot \sin\left(\frac{2\pi kn}{N} \right) \]

Assume

\[r_k[n] = x'[n] + W_N^{-k} \cdot x'[N-1-n] \]

\[s_k[n] = x'[n] - W_N^{-k} \cdot x'[N-1-n] \]

\[\text{VLSI-DSP-9-19} \]
New Recursive Formula for DFT (2/5)

For the DCT, replacing “n” by “N/2 – 1 – n”

\[y_{DCT}[k] = \sum_{n=0}^{N/2-1} r_k[n] \cdot \cos\left(\frac{2\pi kn}{N}\right) \]

\[= \sum_{n=0}^{N/2-1} r_k[N/2 - 1 - n] \cdot \cos\left(\frac{2\pi k(N/2 - 1 - n)}{N}\right) \]

\[= (-1)^k \sum_{n=0}^{N/2-1} r_k[N/2 - 1 - n] \cdot \cos\left(\frac{2\pi k(n+1)}{N}\right) \]

\[= (-1)^k \cdot g_{N/2-1}(k) \]

, where

\[g_{N/2-1}(k) = \sum_{n=0}^{N/2-1} r_k[N/2 - 1 - n] \cdot \cos\left(\frac{2\pi k(n+1)}{N}\right) \]

\[g_i(k) = \sum_{n=0}^{i} r_k(i - n) \cdot \cos((n + 1)\theta_k) \]

\[\theta_k = \frac{2\pi k}{N} \]
New Recursive Formula for DFT (3/5)

Applying the Chebyshev polynomials:

\[
\cos(r\theta) = 2\cos((r-1)\theta) \cdot \cos\theta - \cos((r-2)\theta)
\]

\[
g_i(k) = \sum_{n=0}^{i} r_k[i-n] \cdot \left\{2\cos(n\theta_k) \cdot \cos\theta_k - \cos((n-1)\theta_k)\right\}
\]

\[
= 2\sum_{n=0}^{i} r_k[i-n] \cdot \cos(n\theta_k) \cdot \cos\theta_k - \sum_{n=0}^{i} r_k[i-n] \cdot \cos((n-1)\theta_k)
\]

\[
= 2r_k[i] \cdot \cos\theta_k + 2\sum_{n=0}^{i-1} r_k[i-1-n] \cdot \cos((n+1)\theta_k) \cdot \cos\theta_k
\]

\[-r_k[i] \cdot \cos\theta_k - r_k[i-1] - \sum_{n=0}^{i-2} r_k[i-2-n] \cdot \cos((n+1)\theta_k)
\]

\[
= r_k[i] \cdot \cos\theta_k - r_k[i-1] + 2\cos\theta_k \cdot g_{i-1}(k) - g_{i-2}(k)
\]
New Recursive Formula for DFT (4/5)

For the DST, replacing “n” by “N/2 – 1 – n”

\[y_{DST}[k] = - \sum_{n=0}^{N/2-1} s_k[n] \cdot \sin\left(\frac{2\pi k n}{N}\right) \]

\[= - \sum_{n=0}^{N/2-1} s_k[N/2 - 1 - n] \cdot \sin\left(\frac{2\pi k (N/2 - 1 - n)}{N}\right) \]

\[= (-1)^k \sum_{n=0}^{N/2-1} s_k[N/2 - 1 - n] \cdot \sin\left(\frac{2\pi k (n+1)}{N}\right) \]

\[= (-1)^k \cdot \sum_{n=0}^{N/2-1} s_k[N/2 - 1 - n] \cdot \sin((n + 1)\theta_k) \]

\[= (-1)^k \cdot h_{N/2-1}(k) \]

where \[h_{N/2-1}(k) = \sum_{n=0}^{N/2-1} s_k[N/2 - 1 - n] \cdot \sin((n + 1)\theta_k). \]
New Recursive Formula for DFT (5/5)

Applying the Chebyshev polynomials:

\[
\sin(r\theta) = 2\sin((r-1)\theta) \cdot \cos\theta - \sin((r-2)\theta)
\]

\[
h_j(k) = \sum_{n=0}^{j} s_k [j-n] \cdot \sin((n+1)\theta_k)
\]

\[
= \sum_{n=0}^{j} s_k [j-n] \cdot \{2 \sin(n\theta_k) \cdot \cos\theta_k - \sin((n-1)\theta_k)\}
\]

\[
= 2 \sum_{n=0}^{j} s_k [j-n] \cdot \sin(n\theta_k) \cdot \cos\theta_k - \sum_{n=0}^{j} s_k (j-n) \cdot \sin((n-1)\theta_k)
\]

\[
= 2 \sum_{n=0}^{j-1} s_k [j-1-n] \cdot \sin((n+1)\theta_k) \cdot \cos\theta_k + s_k [j] \cdot \sin\theta_k
\]

\[
- \sum_{n=0}^{j-2} s_k [j-2-n] \cdot \sin((n+1)\theta_k)
\]

\[
= s_k [j] \cdot \sin\theta_k + 2 \cos\theta_k \cdot h_{j-1}(k) - h_{j-2}(k)
\]
The Proposed Recursive DFT formula:

\[
g(k, z) = \frac{\cos \theta_k - z^{-1}}{1 - 2 \cos \theta_k z^{-1} + z^{-2}}
\]

\[
r_k(z) = \frac{\cos \theta_k - z^{-1}}{1 - 2 \cos \theta_k z^{-1} + z^{-2}}
\]

\[
h(k, z) = \frac{\sin \theta_k}{1 - 2 \cos \theta_k z^{-1} + z^{-2}}
\]

\[
s_k(z) = \frac{\sin \theta_k}{1 - 2 \cos \theta_k z^{-1} + z^{-2}}
\]

The Proposed Recursive IDFT formula:

\[
g(n, z) = \frac{\cos \theta_n - z^{-1}}{1 - 2 \cos \theta_n z^{-1} + z^{-2}}
\]

\[
r_n(z) = \frac{\cos \theta_n - z^{-1}}{1 - 2 \cos \theta_n z^{-1} + z^{-2}}
\]

\[
h(n, z) = \frac{\sin \theta_n}{1 - 2 \cos \theta_n z^{-1} + z^{-2}}
\]

\[
s_n(z) = \frac{\sin \theta_n}{1 - 2 \cos \theta_n z^{-1} + z^{-2}}
\]
Block Diagram of Low Computation Cycle for DCT part and DST Part

\[r_k[n] \rightarrow \sum \rightarrow Z^{-1} \rightarrow \cos \theta_k \rightarrow \sum \rightarrow (-1)^k y_{DCT}[k] \]

\[(-1)^k y_{DST}[k] \]

\[s_k[n] \rightarrow \sum \rightarrow Z^{-1} \rightarrow \sin \theta_k \rightarrow \sum \rightarrow 2 \cos \theta_k \rightarrow Z^{-1} \]

\[Z^{-1} \]

\[0 \]

\[0 \]
Resource Sharing and Register Splitting

- **Computation Sharing**
 - Common multiplier for \(\cos \theta_K \)

- **Register Splitting**
 - Reduce critical path
 - Notations 0 and 1: delay elements
 - With the minimum critical path: 10
 - With the fewest registers: 10
 - \(\lll \) : one-bit left shift
 - \(\lll \) : the forward pipeline register

<table>
<thead>
<tr>
<th>Com.</th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period</td>
<td>(2T_m + 3T_a)</td>
<td>(2T_m + 3T_a)</td>
<td>(T_m + 2T_a)</td>
<td>(T_m + 2T_a)</td>
</tr>
<tr>
<td># of Reg.</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Opt.</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Low Computation Cycle and High-Throughput DFT Architecture

\[r_k[n] \rightarrow \sum \rightarrow \cos \theta_k \]

\[s_k[n] \rightarrow \sum \rightarrow \sin \theta_k \]

\[6 \text{ Real Multipliers} \]

Critical Period: \(T_m + 2T_a \)
New Recursive Formula for IDFT (1/5)

\[x[n] = \frac{1}{N} \sum_{k=0}^{N-1} y[k] \cdot W_N^{-kn} \] , where \[W_N = e^{-j2\pi/N} \]

\[x[n] = \frac{1}{N} \sum_{k=0}^{N/2-1} y'[k] \cdot W_N^{-kn} + \frac{1}{N} \sum_{k=0}^{N/2-1} y'[N-1-k] \cdot W_N^{(k+1)n} \]

\[= \frac{1}{N} \sum_{k=0}^{N/2-1} \left(y'[k] + W_N^n \cdot y'[N-1-k] \right) \cdot \cos\left(\frac{2\pi kn}{N} \right) \]

\[+ j \cdot \frac{1}{N} \sum_{k=0}^{N/2-1} \left(y'[k] - W_N^n \cdot y'[N-1-k] \right) \cdot \sin\left(\frac{2\pi kn}{N} \right) = x_{IDCT}[n] + jx_{IDST}[n] \]

, where \[x_{IDCT}[n] = \frac{1}{N} \sum_{k=0}^{N/2-1} \left(y'[k] + W_N^n \cdot y'[N-1-k] \right) \cdot \cos\left(\frac{2\pi kn}{N} \right) \]

\[x_{IDST}[n] = \frac{1}{N} \sum_{k=0}^{N/2-1} \left(y'[k] - W_N^n \cdot y'[N-1-k] \right) \cdot \sin\left(\frac{2\pi kn}{N} \right) \]

Assume \[r_n[k] = y'[k] + W_N^n \cdot y'[N-1-k] \]

\[s_n[k] = y'[k] - W_N^n \cdot y'[N-1-k] \]
New Recursive Formula for IDFT (2/5)

For the IDCT, replacing “n” by “N/2 − 1 − n”

\[x_{IDCT}[n] = \frac{1}{N} \sum_{k=0}^{N/2-1} \left(y'[k] + W_N^n \cdot y'[N − 1 − k] \right) \cdot \cos\left(\frac{2\pi kn}{N}\right) \]

\[= \frac{1}{N} \sum_{k=0}^{N/2-1} r_n[N/2 − 1 − k] \cdot \cos\left(\frac{2\pi n(N/2 − 1 − k)}{N}\right) \]

\[= \frac{(-1)^n}{N} \sum_{k=0}^{N/2-1} r_n[N/2 − 1 − k] \cdot \cos\left(\frac{2\pi n(k + 1)}{N}\right) \]

\[= \frac{(-1)^n}{N} \cdot g_{N/2-1}(n) \]

where

\[g_{N/2-1}(n) = \sum_{k=0}^{N/2-1} r_n[N/2 − 1 − k] \cdot \cos\left(\frac{2\pi n(k + 1)}{N}\right) \]

\[g_i(n) = \sum_{k=0}^{i} r_n[i − k] \cdot \cos((k + 1)\theta_n) \] \[\theta_n = \frac{2\pi n}{N} \]
New Recursive Formula for IDFT (3/5)

Applying the Chebyshev polynomials:

\[\cos(r\theta) = 2\cos((r-1)\theta) \cdot \cos\theta - \cos((r-2)\theta) \]

\[g_i[n] = \sum_{k=0}^{i} r_n[i-k] \cdot \{2\cos(k\theta_n) \cdot \cos\theta_n - \cos((k-1)\theta_n)\} \]

\[= r_n[i] \cdot \cos\theta_n - r_n[i-1] + 2\cos\theta_n \cdot g_{i-1}(n) - g_{i-2}(n) \]

\[\frac{g(n, z)}{r_n(z)} = \frac{\cos\theta_n - z^{-1}}{1 - 2\cos\theta_n z^{-1} + z^{-2}} \]
New Recursive Formula for IDFT (4/5)

For the IDST, replacing “n” by “N/2 – 1 – n”

\[x_{IDST}[n] = \frac{1}{N} \sum_{k=0}^{N/2-1} s_n[k] \cdot \sin\left(\frac{2\pi kn}{N}\right) \]

\[= \frac{1}{N} \sum_{k=0}^{N/2-1} s_n[N/2 - 1 - k] \cdot \sin\left(\frac{2\pi n(N/2 - 1 - k)}{N}\right) \]

\[= -(-1)^n \sum_{k=0}^{N/2-1} s_n[N/2 - 1 - k] \cdot \sin((k + 1)\theta_n) \]

\[= -(-1)^n \cdot h_{N/2-1}(n) \]

, where \[h_{N/2-1}(n) = \sum_{k=0}^{N/2-1} s_n[N/2 - 1 - k] \cdot \sin((k + 1)\theta_n) \]
New Recursive Formula for IDFT (5/5)

Applying the Chebyshev polynomials:

\[\sin(r\theta) = 2\sin((r-1)\theta) \cdot \cos \theta - \sin((r-2)\theta) \]

\[h_j(n) = \sum_{k=0}^{j} s_n[j-k] \cdot \sin((k+1)\theta_n) \]

\[= \sum_{k=0}^{j} s_n[j-k] \cdot \{2\sin(k\theta_n) \cdot \cos \theta_n - \sin((k-1)\theta_n)\} \]

\[= s_n[j] \cdot \sin \theta_n + 2\cos \theta_n \cdot h_{j-1}(n) - h_{j-2}(n) \]

\[\frac{h(n, z)}{s_n(z)} = \frac{\sin \theta_n}{1 - 2\cos \theta_n z^{-1} + z^{-2}} \]
Low Computation Cycle and High-Throughput Recursive IDFT Architecture

- 6 Real Multipliers
- Critical Period: $T_m + 2T_a$
Folded-Type DFT/IDFT Architecture

- **Data Buffer**
 - 64 16-bit word length complex data storage
- **Control Unit**
 - Clock Gated Control
 - Sequence Controller
 - Parameter Controller
- **32 PEs**
 - Pre-processing for S_k and r_k
 - TWO PEs for DST and DCT

Diagram

- **Input Unit**
 - $x'[n]$ and $x'[N-1-n]$
- **Pre-processing**
 - W_N^k
- **Recursive PE**
 - $r_k[n]$, $s_k[n]$, PE_{lm}, and PE_{Re}
- **RDFT Unit**
 - (1), (2), (3)
- **Output Unit**
 - $y[k]$

System Components

- **Data Buffer**
- **Control Unit**
- **32 PEs**
- **Clock Start**
- **Reset**

Notes

- **Folded-Type DFT/IDFT Architecture**
- **Steps**
 - Pre-processing
 - Recursive processing
- **Variables**
 - $x[n]$, $x'[n]$, $x'[N-1-n]$, $r_k[n]$, $s_k[n]$
Folded-Type DFT/IDFT Architecture

- Regularly constructed by N/2 PE’s in parallel
- No intermediate register bank needed
- Further reduce the computation cycle to
 \[N = \frac{N^2/2}{N/2} \]
- Processor latency: \(N \) clock
 (Computation cycles)
- Critical Path: \(T_m + 2T_a \)
Simulation Result

- **IFFT**: the signal $x(t)$ pass through floating point IFFT block
- **AWGN**: channel model
- **FFT**: The test modules include four different systems: butterfly, RDFT, Goertzel 1st and 2st architecture.
Three Phases for IC Implementation

Description
Specify and capture the ideal into some formal representations

Verification
Verify the correctness of design and implementation

Implementation
Refine the design through all phases
Chip Layout

- TSMC 0.13 um CMOS process
- 64 point DFT
- 16-bit input word length
- 47.67 ns @1.3V
- Chip area: 1822 um x 1822 um
- Power Consumption: 29.94 mW@20 MHz
Outline

• Introduction
• Review of First- and Second-Order Recursive Discrete Fourier Transform (DFT) Structures
• New Recursive DFT/IDFT Algorithm and Architecture
• Folded-Type DFT/IDFT Architecture and Implementation
 • Comparison Results
 • Conclusions
Comparison Results (1/2)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>First-Order DFT/IDFT</th>
<th>Second-Order DFT/IDFT</th>
<th>Proposed Work 1 (Core Type)</th>
<th>Proposed Work 2 (Parallel Type)</th>
<th>Proposed Work 3 (Folded Type)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical Period</td>
<td>$T_m + 2T_a$</td>
<td>$T_m + 3T_a$</td>
<td>$T_m + 2T_a$</td>
<td>$T_m + 2T_a$</td>
<td>$T_m + 2T_a$</td>
</tr>
<tr>
<td># of Real Multipliers</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>$4N$</td>
<td>$2N$</td>
</tr>
<tr>
<td># of Real Multiplications for Each Output $X[K]$ or $x[n]$</td>
<td>$4N$</td>
<td>$2N + 4$</td>
<td>$2N + 2$</td>
<td>$2N + 2$</td>
<td>$2N + 2$</td>
</tr>
<tr>
<td># of Real Additions for Each Output $X[K]$ or $x[n]$</td>
<td>$4N$</td>
<td>$4N + 4$</td>
<td>$4N + 4$</td>
<td>$4N + 4$</td>
<td>$4N + 4$</td>
</tr>
<tr>
<td># of Computation Cycles for N-Point DFT/IDFT</td>
<td>N^2</td>
<td>N^2</td>
<td>N^2</td>
<td>$2N$</td>
<td>$3N$</td>
</tr>
</tbody>
</table>
Comparison Results (2/2)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Second Order DFT/IDFT</th>
<th>V-Y’s Structure [10] (Core Type)</th>
<th>Y-C’s Structure [5] (FFR-DFT)</th>
<th>Proposed Work 1 (Core Type)</th>
<th>Proposed Work 2 (Folded Type)</th>
</tr>
</thead>
<tbody>
<tr>
<td># of Computation Cycles for Each (y[k]) or (x[n])</td>
<td>(N)</td>
<td>(N)</td>
<td>(N)</td>
<td>(N/2)</td>
<td>(N/2)</td>
</tr>
<tr>
<td># of Computation Cycles for N-Point DFT/IDFT</td>
<td>(N^2)</td>
<td>(N^2)</td>
<td>(N^2)</td>
<td>(N^2/2)</td>
<td>(N)</td>
</tr>
<tr>
<td>Clock Period</td>
<td>(T_m + 3T_a)</td>
<td>(T_m + 2T_a)</td>
<td>(2T_m + 5T_a)</td>
<td>(T_m + 2T_a)</td>
<td>(T_m + 2T_a)</td>
</tr>
<tr>
<td># of Real Multipliers</td>
<td>6</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>3N</td>
</tr>
<tr>
<td></td>
<td>(Pre-processing Excluded)</td>
<td>(Pre-processing Excluded)</td>
<td>(Pre-processing Excluded)</td>
<td>(Pre-processing Excluded)</td>
<td>(Pre-processing Excluded)</td>
</tr>
</tbody>
</table>
Conclusions

Three new recursive DFT/IDFT architectures based on Goertzel algorithm by the hybrid of module-sharing and register-splitting schemes
 - High-speed due to register-splitting scheme
 - Low-area due to module-sharing scheme

Propose a lower computation cycle and high-throughput DFT/IDFT algorithm and architecture
 - Low computation cycle due to input strength reduction scheme
 - High-throughput due to register-splitting scheme
References

References (Cont’d)

References (Cont’d)