Devices

Lan-Da Van (范倫達), Ph. D.
Department of Computer Science
National Chiao Tung University
Taiwan, R.O.C.
Fall, 2013

ldvan@cs.nctu.edu.tw

http://www.cs.nctu.edu.tw/~ldvan/
Outlines

- Introduction
 - Ideal I-V Characteristics Transistor
 - C-V Characteristics
 - Nonideal I-V Effect
 - DC Transfer Characteristics
 - Conclusion
CMOS Process
MOS Transistor Symbols

NMOS Enhancement

PMOS Enhancement

NMOS Depletion

NMOS with Bulk Contact

The depletion MOSFET has a physically implanted channel.
MOS Capacitor

- Gate and body form MOS capacitor
- Operating modes
 - Accumulation
 - Depletion
 - Inversion

(a) $V_g < 0$

(b) $0 < V_g < V_t$

(c) $V_g > V_t$
Terminal Voltages

- Mode of operation depends on V_g, V_d, V_s
 - $V_{gs} = V_g - V_s$
 - $V_{gd} = V_g - V_d$
 - $V_{ds} = V_d - V_s = V_{gs} - V_{gd}$

- Source and drain are symmetric diffusion terminals
 - By convention, source is terminal at lower voltage
 - Hence $V_{ds} \geq 0$

- nMOS body is grounded. First assume source is 0 too.

- Three regions of operation
 - Cutoff
 - Linear
 - Saturation
nMOS Cutoff

- No channel
- $I_{ds} = 0$
nMOS Linear

- Channel forms
- Current flows from d to s
 - e⁻ from s to d
- I_{ds} increases with V_{ds}
- Similar to linear resistor
nMOS Saturation

- Channel pinches off
- I_{ds} independent of V_{ds}
- We say current saturates
- Similar to current source

\[V_{gs} > V_t \]
\[V_{gd} < V_t \]
\[V_{ds} > V_{gs} - V_t \]
Outlines

- Introduction
- *Ideal I-V Characteristics Transistor*
- C-V Characteristics
- Nonideal I-V Effect
- DC Transfer Characteristics
- Conclusion
Transistor Structure

- n-type transistor:
0.25 micron Transistor (Bell Labs)
I-V Characteristics

- In Linear region, I_{ds} depends on
 - How much charge is in the channel?
 - How fast is the charge moving?
Channel Charge

- MOS structure looks like parallel plate capacitor while operating in inversion
 - Gate – oxide – channel
- \(Q_{\text{channel}} = CV \)
- \(C = C_g = \varepsilon_{ox}WL/t_{ox} = C_{ox}WL \)
- \(V = V_{gc} - V_t = (V_{gs} - V_{ds}/2) - V_t \)

\[C_{ox} = \frac{\varepsilon_{ox}}{t_{ox}} \]
Carrier Velocity

- Charge is carried by e-
- Carrier velocity v proportional to lateral E-field between source and drain
 - $v = \mu E$ \hspace{1cm} μ called mobility
 - $E = \frac{V_{ds}}{L}$
 - Time for carrier to cross channel:
 - $t = \frac{L}{v}$
nMOS Linear I-V

Now we know

- How much charge Q_{channel} is in the channel
- How much time t each carrier takes to cross

$$I_{ds} = \frac{Q_{\text{channel}}}{t}$$

$$= \mu C_{ox} \frac{W}{L} \left(V_{gs} - V_t - \frac{V_{ds}}{2}\right)V_{ds}$$

$$= \beta \left(V_{gs} - V_t - \frac{V_{ds}}{2}\right)V_{ds}$$

$$\beta = \mu C_{ox} \frac{W}{L}$$
nMOS Saturation I-V

- If \(V_{gd} < V_t \), channel pinches off near drain
 - When \(V_{ds} > V_{dsat} = V_{gs} - V_t \)
- Now drain voltage no longer increases current

\[
I_{ds} = \beta \left(V_{gs} - V_t - \frac{V_{dsat}}{2} \right) V_{dsat}
\]

\[
= \frac{\beta}{2} \left(V_{gs} - V_t \right)^2
\]
I-V Curve Characteristics

- **Linear region** \((V_{ds} < V_{gs} - V_{t})\):
 \[I_d = k' \frac{W}{L} \left((V_{gs} - V_{t})V_{ds} - \frac{1}{2}V_{ds}^2 \right)\]

- **Saturation region** \((V_{ds} \geq V_{gs} - V_{t})\):
 \[I_d = \frac{1}{2} k' \frac{W}{L} (V_{gs} - V_{t})^2\]

- Process transconductance \(k' = \mu C_{ox}\).
- Device transconductance \(\beta = k'W/L\).
Current through a Transistor

From a MOSIS process in 0.5 um process:

- n-type:
 - $k_n' = 73 \mu A/V^2$
 - $V_{tn} = 0.7 V$
- p-type:
 - $k_p' = 21 \mu A/V^2$
 - $V_{tp} = -0.8 V$

Use 0.5 μm parameters. Let $W/L = 3/2$. Measure the current through a minimum-sized n-type transistor at the boundary between linear and saturation regions.

- $V_{gs} = 2V$:
 $$I_d = 0.5k'(W/L)(V_{gs}-V_t)^2 = 0.5 \times 73 \times (3/2) (2-0.7)^2 = 93 \mu A$$
- $V_{gs} = 5V$:
 $$I_d = 0.5k'(W/L)(V_{gs}-V_t)^2 = 0.5 \times 73 \times (3/2) (5-0.7)^2 = 1 mA$$
pMOS I-V

- All dopings and voltages are inverted for pMOS
- Mobility μ_p is determined by holes
 - Typically 2-3x lower than that of electrons μ_n
 - 120 cm2/V*s in AMI 0.6 μm process
- Thus pMOS must be wider to provide same current
 - In this class, assume $\mu_n / \mu_p = 2$

- *** plot I-V here
Summary of Operation Regions

Table 2.2 Relationships between voltages for the three regions of operation of a CMOS inverter

<table>
<thead>
<tr>
<th></th>
<th>Cutoff</th>
<th>Linear</th>
<th>Saturated</th>
</tr>
</thead>
<tbody>
<tr>
<td>nMOS</td>
<td>$V_{gsn} < V_{tn}$</td>
<td>$V_{gsn} > V_{tn}$</td>
<td>$V_{gsn} > V_{tn}$</td>
</tr>
<tr>
<td></td>
<td>$V_{in} < V_{tn}$</td>
<td>$V_{in} > V_{tn}$</td>
<td>$V_{in} > V_{tn}$</td>
</tr>
<tr>
<td></td>
<td>$V_{dsn} < V_{gsn} - V_{tn}$</td>
<td>$V_{dsn} > V_{gsn} - V_{tn}$</td>
<td>$V_{dsn} > V_{gsn} - V_{tn}$</td>
</tr>
<tr>
<td></td>
<td>$V_{out} < V_{in} - V_{tn}$</td>
<td>$V_{out} > V_{in} - V_{tn}$</td>
<td>$V_{out} > V_{in} - V_{tn}$</td>
</tr>
<tr>
<td>pMOS</td>
<td>$V_{gsp} > V_{tp}$</td>
<td>$V_{gsp} < V_{tp}$</td>
<td>$V_{gsp} < V_{tp}$</td>
</tr>
<tr>
<td></td>
<td>$V_{in} > V_{tp} + V_{DD}$</td>
<td>$V_{in} < V_{tp} + V_{DD}$</td>
<td>$V_{in} < V_{tp} + V_{DD}$</td>
</tr>
<tr>
<td></td>
<td>$V_{dsp} > V_{gsp} - V_{tp}$</td>
<td>$V_{dsp} < V_{gsp} - V_{tp}$</td>
<td>$V_{dsp} < V_{gsp} - V_{tp}$</td>
</tr>
<tr>
<td></td>
<td>$V_{out} > V_{in} - V_{tp}$</td>
<td>$V_{out} < V_{in} - V_{tp}$</td>
<td>$V_{out} < V_{in} - V_{tp}$</td>
</tr>
</tbody>
</table>
Outlines

- Introduction
- Ideal I-V Characteristics Transistor
- **C-V Characteristics**
- Nonideal I-V Effect
- DC Transfer Characteristics
- Conclusion
Capacitance

- Any two conductors separated by an insulator have capacitance
- Gate to channel capacitor is very important
 - Creates channel charge necessary for operation
- Source and drain have capacitance to body
 - Across reverse-biased diodes
 - Called diffusion capacitance because it is associated with source/drain diffusion
MOSFET Gate as Capacitor

- Basic gate structure with the parallel-plate capacitor
- Formula for parallel plate capacitance:
 \[C_g = C_{ox} \cdot WL \], where \(C_{ox} = \varepsilon_{ox} / t_{ox} \)
- Permittivity of silicon:
 \(\varepsilon_{ox} = 3.46 \times 10^{-13} \, \text{F/cm} \)
Transistor Gate Parasitics (1/2)

- Gate capacitance consists of two components:
 1) Intrinsic capacitance.
 2) Overlapped capacitance

- Intrinsic capacitance:

<table>
<thead>
<tr>
<th>Table 2.1</th>
<th>Approximation of intrinsic MOS gate capacitance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>Cutoff</td>
</tr>
<tr>
<td>C_{gb}</td>
<td>C_0</td>
</tr>
<tr>
<td>C_{gs}</td>
<td>0</td>
</tr>
<tr>
<td>C_{gd}</td>
<td>0</td>
</tr>
<tr>
<td>$C_g = C_{gs} + C_{gd} + C_{gb}$</td>
<td>C_0</td>
</tr>
</tbody>
</table>
Gate-source/drain overlap capacitance Intrinsic capacitance:

- $C_{gs\text{ (overlap)}} = C_{gsol} W$
- $C_{gd\text{ (overlap)}} = C_{gdol} W$

FIG 2.10 Overlap capacitance
Diffusion Wire Capacitance (1/3)

Capacitances formed by p-n junctions:

- \(C_{sb} = A_S x C_{jbs} + P_S x C_{jbssw} \)
- \(C_{db} = A_D x C_{jbd} + P_D x C_{jbdsw} \)

Diagram of a diffusion wire with annotations for substrate capacitance, bottomwall capacitance, and sidewall capacitances.
Diffusion Wire Capacitance (2/3)

- Sidewall and bottomwall capacitance can be calculated from the junction capacitance depending on the function of voltage across junction:
 - \(C_j(V_r) = \frac{C_{j0}}{\sqrt{1 + V_r/V_{bi}}} \)
- Zero-bias depletion capacitance:
 - \(C_{j0} = \frac{\varepsilon_{si}}{t_d} \)
- Depletion region width:
 - \(t_{d0} = \sqrt{(1/N_A + 1/N_D)2\varepsilon_{si} V_{bi}/q} \)
Diffusion Wire Capacitance (3/3)

- Undesirable, called *parasitic* capacitance

- Capacitance depends on area and perimeter
 - Use smaller and fewer diffusion nodes
 - Comparable to C_g for contacted diff
 - $\frac{1}{2} C_g$ for uncontacted node
 - Varies with process
Poly/Metal Wire Capacitance

Two components:
- Parallel plate to Substrate
- Fringe to Substrate
Metal Coupling Capacitances

Coupling to adjacent wires on same layer or wires on above/below layers:
Example: Parasitic Capacitance Measurement

- **n-diffusion capacitance:**
 - Bottomwall = \((3 \times 0.75 + 1 \times 1) \times 0.6 = 1.95 \text{ fF}\).
 - Sidewall = \((0.75 + 3 + 0.25 + 1 + 1 + 4) \times 0.2 = 2 \text{ fF}\).

- **Metal capacitance:**
 - Parallel plate = 0.15 fF.
 - Fringe = 0.72 fF.

N-diffusion:
- Bottomwall capacitance: 0.6 fF/\mu m
- Sidewall capacitance: 0.2 fF/\mu m

Metal 1:
- Plate: 0.04 fF/\mu m
- Fringe: 0.09 fF/\mu m
Outlines

- Introduction
- Ideal I-V Characteristics Transistor
- C-V Characteristics
- Nonideal I-V Effect
- DC Transfer Characteristics
- Conclusion
Channel Length Modulation (1/2)

\[V_{ds} < V_{gs} - V_t \]

\[V_{ds} = V_{gs} - V_t \]

\[V_{ds} > V_{gs} - V_t \]

\[L_{eff} = L - L_d \text{ due to reverse bias between drain and body (i.e., } V_{db} = V_{ds} \)
Modified drain current equation with channel length effect:

\[I_{D,\text{sat}} = \frac{1}{2} k' \frac{W}{L} (V_{gs} - V_t)^2 (1 + \lambda V_{ds}) \]

\(\lambda \) factor describes small dependence of drain current on \(V_{ds} \) at saturation.

\(\lambda \) factor is measured empirically.

Equation has a discontinuity between linear and saturation regions --- small enough to be ignored.

Channel length is very important to analog design because it reduces the gain of amplifier.
Threshold Voltage, V_t (1/2)

$$V_t = V_{fb} + \phi_s + \frac{Q_b}{C_{ox}} + V_{II} = V_{t0} + \gamma \left(\sqrt{\phi_s + V_{sb}} - \sqrt{\phi_s} \right) = V_{t0} + \Delta V_t$$

$$\phi_s = 2|\phi_F| = 2 \frac{kT}{q} \ln \frac{N_a}{n_i} \quad \gamma = \frac{\sqrt{2q \varepsilon_{si} N_a}}{C_{ox}}$$

- $V_{fb} = \text{Flatband voltage}$; depends on difference in work function between gate and substrate and on fixed surface charge
- $\phi_s = \text{Surface potential}$ (about $2\phi_F$), where ϕ_F is Fermi potential.
- $Q_b = \text{Value of charge across the parallel plate capacitor.}$
Threshold Voltage, V_t (2/2)

- $V_{\|} = $ Voltage adjustment.
- $V_{t0} = $ Threshold Voltage without Body effect.

Body effect

- **Definition:** Variation of threshold voltage with source/substrate voltage is called as.
- **Reorganize threshold voltage equation:**
 \[V_t = V_{t0} + \Delta V_t \]

- Threshold voltage is a function of source/substrate voltage V_{sb}.
- Body effect factor γ is the coefficient for the V_{sb} dependence factor.
Example: Threshold Voltage

\[V_t = V_{fb} + \phi_s + \frac{Q_{b0}}{C_{ox}} + V_{II} = -0.91 + 0.58 + \frac{1.4 \times 10^{-8}}{1.73 \times 10^{-7}} + 0.92 \]

= 0.68 V

\[\gamma = \frac{\sqrt{2q\varepsilon_{si}N_a}}{C_{ox}} = \frac{\sqrt{2 \times (1.6 \times 10^{-19}) \times (1.0 \times 10^{-12}) \times 10^{15}}}{1.73 \times 10^{-7}} = 0.1 \]

Let \(V_{sb} = 5 \) V

\[\Delta V_t = \gamma \left(\sqrt{\phi_s} + V_{sb} - \sqrt{\phi_s} \right) = 0.1 \left(\sqrt{0.58} + 5 - \sqrt{0.58} \right) = 0.16 \]
Leakage Currents

- A variety of leakage currents draw current away from the main logic path.
- The **subthreshold current** is one particularly important type of leakage current.

Sources of leakage current:
- Subthreshold current (a.k.a. Weak inversion current): Transistors can’t abruptly turn ON or OFF
- Drain-induced barrier lowering
- Reverse-biased p-n junctions: Reverse-biased PN junction diode current
- Gate oxide tunneling: Tunneling through ultra thin gate dielectric
- Hot carriers
- Punchthrough currents
Subthreshold Current

Subthreshold current:

- \(I_{\text{sub}} = k e^{\left(\frac{(V_{\text{gs}} - V_t)}{S \ln 10}\right)} [1 - e^{-q V_{ds}/kT}] \)
- Subthreshold current is an exponential function of gate voltage.
- Subthreshold current is a function of \(V_t \).
- Adjust \(V_t \) by changing the substrate bias to control leakage.

Subthreshold slope \(S \) characterizes weak inversion current.
DIBL

Drain-Induced Barrier Lowering

- Drain voltage also affects V_t

$$V'_t = V_t - \eta V_{ds}$$

- High drain voltage causes subthreshold leakage to increase.
Reverse-Biased PN Junction Leakage

- Reverse-biased p-n junctions have some leakage

$$I_D = I_S \left(e^{\frac{V_D}{kT}} - 1 \right)$$

- I_S depends on doping levels
 - And area and perimeter of diffusion regions
 - Typically < 1 fA/µm²
Gate Oxide Tunneling Leakage

- Carriers may tunnel thorough very thin gate oxides
- Predicted tunneling current (from [Song01])
- Negligible for older processes
- May soon be critically important in modern process

![Graph showing gate oxide tunneling leakage current versus V_DD for different tox thicknesses.]

\[J_G (A/cm^2) \]

\[10^{-9} \]

\[10^{-6} \]

\[10^{-3} \]

\[10^0 \]

\[10^3 \]

\[10^6 \]

\[10^9 \]

\[V_{DD} \text{ trend} \]
Hot Carriers

Electric fields across channel impart high energies to some carriers

- These “hot” carriers may be blasted into the gate oxide where they become trapped
- Accumulation of charge in oxide causes shift in V_t over time
- Eventually V_t shifts too far for devices to operate correctly

Choose V_{DD} to achieve reasonable product lifetime

- Worst problems for inverters and NORs with slow input risetime and long propagation delays
Outlines

- Introduction
- Ideal I-V Characteristics Transistor
- C-V Characteristics
- Nonideal I-V Effect
 - DC Transfer Characteristics
- Conclusion
Activity

1) If the width of a transistor increases, the current will
 increase decrease not change

2) If the length of a transistor increases, the current will
 increase decrease not change

3) If the supply voltage of a chip increases, the maximum
 transistor current will
 increase decrease not change

4) If the width of a transistor increases, its gate capacitance will
 increase decrease not change

5) If the length of a transistor increases, its gate capacitance will
 increase decrease not change

6) If the supply voltage of a chip increases, the gate capacitance
 of each transistor will
 increase decrease not change
Activity

1) If the width of a transistor increases, the current will
 - increase
 - decrease
 - not change

2) If the length of a transistor increases, the current will
 - increase
 - decrease
 - not change

3) If the supply voltage of a chip increases, the maximum transistor current will
 - increase
 - decrease
 - not change

4) If the width of a transistor increases, its gate capacitance will
 - increase
 - decrease
 - not change

5) If the length of a transistor increases, its gate capacitance will
 - increase
 - decrease
 - not change

6) If the supply voltage of a chip increases, the gate capacitance of each transistor will
 - increase
 - decrease
 - not change
DC Response

DC Response: \(V_{\text{out}} \) vs. \(V_{\text{in}} \) for a gate

Ex: Inverter
- When \(V_{\text{in}} = 0 \) \(\rightarrow \) \(V_{\text{out}} = V_{\text{DD}} \)
- When \(V_{\text{in}} = V_{\text{DD}} \) \(\rightarrow \) \(V_{\text{out}} = 0 \)
- In between, \(V_{\text{out}} \) depends on transistor size and current
- By KCL, must settle such that \(I_{\text{dsn}} = |I_{\text{dsp}}| \)
- We could solve equations
- But graphical solution gives more insight
Transistor Operation

- Current depends on region of transistor behavior
- For what V_{in} and V_{out} are nMOS and pMOS in
 - Cutoff?
 - Linear?
 - Saturation?
nMOS Operation

<table>
<thead>
<tr>
<th>Cutoff</th>
<th>Linear</th>
<th>Saturated</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{gsn} <$</td>
<td>$V_{gsn} >$</td>
<td>$V_{gsn} >$</td>
</tr>
<tr>
<td>$V_{dsn} <$</td>
<td></td>
<td>$V_{dsn} >$</td>
</tr>
</tbody>
</table>

Diagram:

- V_{DD}
- V_{in}
- I_{dsp}
- I_{dsn}
- V_{out}
nMOS Operation

<table>
<thead>
<tr>
<th>Cutoff</th>
<th>Linear</th>
<th>Saturated</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{gsn} < V_{tn}$</td>
<td>$V_{gsn} > V_{tn}$</td>
<td>$V_{gsn} > V_{tn}$</td>
</tr>
<tr>
<td>$V_{dsn} < V_{gsn} - V_{tn}$</td>
<td>$V_{dsn} > V_{gsn} - V_{tn}$</td>
<td>$V_{dsn} > V_{gsn} - V_{tn}$</td>
</tr>
</tbody>
</table>

![nMOS Operation Diagram](image-url)
nMOS Operation

<table>
<thead>
<tr>
<th>Cutoff</th>
<th>Linear</th>
<th>Saturated</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{gsn} < V_{tn}$</td>
<td>$V_{gsn} > V_{tn}$</td>
<td>$V_{gsn} > V_{tn}$</td>
</tr>
<tr>
<td>$V_{dsn} < V_{gsn} - V_{tn}$</td>
<td>$V_{dsn} > V_{gsn} - V_{tn}$</td>
<td>$V_{dsn} > V_{gsn} - V_{tn}$</td>
</tr>
</tbody>
</table>

$V_{gsn} = V_{in}$

$V_{dsn} = V_{out}$
nMOS Operation

<table>
<thead>
<tr>
<th>Cutoff</th>
<th>Linear</th>
<th>Saturated</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{gsn} < V_{tn}$</td>
<td>$V_{gsn} > V_{tn}$</td>
<td>$V_{gsn} > V_{tn}$</td>
</tr>
<tr>
<td>$V_{in} < V_{tn}$</td>
<td>$V_{in} > V_{tn}$</td>
<td>$V_{in} > V_{tn}$</td>
</tr>
<tr>
<td>$V_{dsn} < V_{gsn} - V_{tn}$</td>
<td>$V_{dsn} > V_{gsn} - V_{tn}$</td>
<td>$V_{out} > V_{in} - V_{tn}$</td>
</tr>
<tr>
<td>$V_{out} < V_{in} - V_{tn}$</td>
<td>$V_{out} > V_{in} - V_{tn}$</td>
<td>$V_{out} > V_{in} - V_{tn}$</td>
</tr>
</tbody>
</table>

$V_{gsn} = V_{in}$

$V_{dsn} = V_{out}$
pMOS Operation

<table>
<thead>
<tr>
<th>Cutoff</th>
<th>Linear</th>
<th>Saturated</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{gsp} >$</td>
<td>$V_{gsp} <$</td>
<td>$V_{gsp} <$</td>
</tr>
<tr>
<td>$V_{dsp} >$</td>
<td>$V_{dsp} <$</td>
<td></td>
</tr>
</tbody>
</table>

![pMOS Circuit Diagram](image)

The diagram shows a pMOS transistor with inputs V_{in} and V_{DD}, output V_{out}, and currents I_{dsp} and I_{dsn}. The expressions for the different regions of operation are as follows:

- **Cutoff**: $V_{gsp} > V_{gsp} < V_{dsp} > V_{dsp} <$
- **Linear**: $V_{gsp} <$
- **Saturated**: $V_{gsp} <$
pMOS Operation

<table>
<thead>
<tr>
<th>Cutoff</th>
<th>Linear</th>
<th>Saturated</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{gsp} > V_{tp}$</td>
<td>$V_{gsp} < V_{tp}$</td>
<td>$V_{gsp} < V_{tp}$</td>
</tr>
<tr>
<td>$V_{dsp} > V_{gsp} - V_{tp}$</td>
<td>$V_{dsp} < V_{gsp} - V_{tp}$</td>
<td></td>
</tr>
</tbody>
</table>

![pMOS Operation Diagram](image-url)
pMOS Operation

<table>
<thead>
<tr>
<th>Cutoff</th>
<th>Linear</th>
<th>Saturated</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{gsp} > V_{tp}$</td>
<td>$V_{gsp} < V_{tp}$</td>
<td>$V_{gsp} < V_{tp}$</td>
</tr>
<tr>
<td></td>
<td>$V_{dsp} > V_{gsp} - V_{tp}$</td>
<td>$V_{dsp} < V_{gsp} - V_{tp}$</td>
</tr>
</tbody>
</table>

\[
V_{gsp} = V_{in} - V_{DD} \quad V_{tp} < 0
\]

\[
V_{dsp} = V_{out} - V_{DD}
\]
pMOS Operation

<table>
<thead>
<tr>
<th>Cutoff</th>
<th>Linear</th>
<th>Saturated</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{gsp} > V_{tp}$</td>
<td>$V_{gsp} < V_{tp}$</td>
<td>$V_{gsp} < V_{tp}$</td>
</tr>
<tr>
<td>$V_{in} > V_{DD} + V_{tp}$</td>
<td>$V_{in} < V_{DD} + V_{tp}$</td>
<td>$V_{in} < V_{DD} + V_{tp}$</td>
</tr>
<tr>
<td>$V_{dsp} > V_{gsp} - V_{tp}$</td>
<td>$V_{dsp} < V_{gsp} - V_{tp}$</td>
<td>$V_{dsp} < V_{gsp} - V_{tp}$</td>
</tr>
<tr>
<td>$V_{out} > V_{in} - V_{tp}$</td>
<td>$V_{out} < V_{in} - V_{tp}$</td>
<td>$V_{out} < V_{in} - V_{tp}$</td>
</tr>
</tbody>
</table>

$V_{gsp} = V_{in} - V_{DD}$

$V_{tp} < 0$

$V_{dsp} = V_{out} - V_{DD}$
I-V Characteristics

Make pMOS is wider than nMOS such that $\beta_n = \beta_p$
Current vs. V_{out}, V_{in}
Load Line Analysis

For a given V_{in}:
- Plot I_{dsn}, I_{dsp} vs. V_{out}
- V_{out} must be where $|currents|$ are equal in

![Graph showing load line analysis with V_{in}, I_{dsn}, I_{dsp}, V_{out}, and V_{DD}]
Load Line Analysis

\[V_{\text{in}} = 0 \]

\[V_{\text{in0}} \]

\[I_{\text{dsn}}, |I_{\text{dsp}}| \]

\[V_{\text{out}} \rightarrow V_{\DD} \]

\[V_{\text{in0}} \]
\[V_{in} = 0.2V_{DD} \]
Load Line Analysis

\[V_{in} = 0.4V_{DD} \]
Load Line Analysis

\[V_{in} = 0.6V_{DD} \]
Load Line Analysis

\[V_{in} = 0.8V_{DD} \]
Load Line Analysis

\[V_{in} = V_{DD} \]

\[I_{dsn}, |I_{dsp}| \]

\[V_{in0}, V_{in1}, V_{in2}, V_{in3}, V_{in4}, V_{in5} \]

\[V_{out}, V_{DD} \]
Load Line Summary

\[V_{\text{in0}} \rightarrow V_{\text{in1}} \rightarrow V_{\text{in2}} \rightarrow V_{\text{in3}} \rightarrow V_{\text{in4}} \rightarrow V_{\text{out}} \]

\[|I_{\text{dsn}}| \rightarrow |I_{\text{dsp}}| \rightarrow V_{\text{DD}} \]
DC Transfer Curve

- Transcribe points onto V_{in} vs. V_{out} plot
Operating Regions

Revisit transistor operating regions

<table>
<thead>
<tr>
<th>Region</th>
<th>nMOS</th>
<th>pMOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Operating Regions

Revisit transistor operating regions

<table>
<thead>
<tr>
<th>Region</th>
<th>nMOS</th>
<th>pMOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Cutoff</td>
<td>Linear</td>
</tr>
<tr>
<td>B</td>
<td>Saturation</td>
<td>Linear</td>
</tr>
<tr>
<td>C</td>
<td>Saturation</td>
<td>Saturation</td>
</tr>
<tr>
<td>D</td>
<td>Linear</td>
<td>Saturation</td>
</tr>
<tr>
<td>E</td>
<td>Linear</td>
<td>Cutoff</td>
</tr>
</tbody>
</table>

\[V_{\text{out}} \]

\[V_{\text{in}} \]
Beta Ratio

- If $\beta_p / \beta_n \neq 1$, switching point will move from $V_{DD}/2$
- Called *skewed* gate
- Other gates: collapse into equivalent inverter
Logic Levels

- **Solid logic 0/1** defined by V_{SS}/V_{DD}.
- Inner bounds of logic values V_L/V_H are directly determined by circuit properties, as in some other logic families.
- Levels at output of one gate must be sufficient to drive next gate.

<table>
<thead>
<tr>
<th>V_{DD}</th>
<th>logic 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_H</td>
<td>unknown</td>
</tr>
<tr>
<td>V_L</td>
<td></td>
</tr>
<tr>
<td>V_{SS}</td>
<td>logic 0</td>
</tr>
</tbody>
</table>
Inverter Transfer Curve (1/3)

- Transfer curve shows static input/output relationship — hold input voltage, measure output voltage.

Nonlinear!
Inverter Transfer Curve (2/3)

\[V_{OL} < V_{IL} \]

\[V_{OH} > V_{IH} \]

- \(V_{IL} = 1.2V \)
- \(V_{OH} = 4.8V \)
- \(V_{IH} = 2.2V \)
- \(V_{OL} = 0.4V \)
Choose threshold voltages at points where slope of transfer curve = -1.

Inverter has a high gain between \(V_{IL} \) and \(V_{IH} \) points, low gain at outer regions of the transfer curve.

Note that logic 0 and 1 regions are not equal sized—in this case, high pull-up resistance leads to smaller valid logic 1 range.
Noise Margins

How much noise can a gate input see before it does not recognize the input?

\[\text{NM}_H = V_{OH} - V_{IH} \]
\[\text{NM}_L = V_{IL} - V_{OL} \]
Logic Levels

To maximize noise margins, select logic levels at

\[V_{\text{in}} \rightarrow V_{\text{out}} \]

\[V_{\text{DD}} \]

\[\beta_p / \beta_n > 1 \]
Logic Levels

To maximize noise margins, select logic levels at
- unity gain point of DC transfer characteristic

\[V_{DD}, V_{OH}, V_{OL} \]

\[V_{in}, V_{out}, V_{IL}, V_{IH}, V_{DD}, V_{OL}, V_{OH} \]

Unity Gain Points
Slope = -1

\[\beta_p / \beta_n > 1 \]

Schematic diagram with symbols and annotations.
Conclusion

Widely discuss the following items:

- I-V Characteristics Transistor
- C-V Characteristics
- Nonideal I-V Effect
- DC Transfer Characteristics